2 6 M ay 2 00 4 Knot theory related to generalized and cyclotomic Hecke algebras of type
نویسندگان
چکیده
In [12] is established that knot isotopy in a 3-manifold may be interpreted in terms of Markov braid equivalence and, also, that the braids related to the 3-manifold form algebraic structures. Moreover, the sets of braids related to the solid torus or to the lens spaces L(p, 1) form groups, which are in fact the Artin braid groups of type B. As a consequence, in [12, 13] appeared the first construction of a Jones-type invariant using Hecke algebras of type B, and this had a natural interpretation as an isotopy invariant for oriented knots in a solid torus. In a further ‘horizontal’ development and using a different technique we constructed in [8] all such solid torus knot invariants derived from the Hecke algebras of type B. Furthermore, in [7] all Markov traces related to the Hecke algebras of type D were consequently constructed.
منابع مشابه
J an 2 00 6 Crystal bases and simple modules for Hecke algebras of type G ( p , p , n ) ∗
We apply the crystal bases theory of Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type G(p, p, n). This yields classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003) 7-20]. The separated case was completed in [J. Hu, J. Algebra 274...
متن کاملar X iv : m at h / 06 07 45 1 v 1 [ m at h . R T ] 1 9 Ju l 2 00 6 BLOCKS OF AFFINE AND CYCLOTOMIC HECKE ALGEBRAS
This paper classifies the blocks of the affine Hecke algebras of type A and the blocks of the cyclotomic Hecke algebras of type G(r, 1, n) over an arbitrary algebraically closed field. Rather than working with the Hecke algebras directly we work instead with the cyclotomic Schur algebras. The advantage of these algebras is that the cyclotomic Jantzen sum formula gives an easy combinatorial char...
متن کامل2 6 M ay 2 00 4 Markov traces and knot invariants related to Iwahori - Hecke algebras of type B
In classical knot theory we study knots inside the 3-sphere modulo isotopy. Using the Alexander and Markov theorem, we can translate this into a purely algebraic setting in terms of Artin braid groups modulo an equivalence relation generated by ‘Markov moves’ (one of which is usual conjugation inside the braid group). V.F.R. Jones [5] used this fact in 1984 for constructing a new knot invariant...
متن کامل2 7 Ju n 20 05 Crystal bases and simple modules for Hecke algebras of type G ( p , p , n ) ∗
We apply the crystal bases theory of Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type G(p, p, n). This yields classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003) 7-20]. The separated case was completed in [J. Hu, J. Algebra 274...
متن کاملAane Hecke Algebras, Cyclotomic Hecke Algebras and Cliiord Theory
We show that the Young tableaux theory and constructions of the irreducible representations of the Weyl groups of type A, can be obtained, in all cases, from the aane Hecke algebra of type A. The Young tableaux theory was extended to aane Hecke algebras (of general Lie type) in recent work of A. Ram. We also show how (in general Lie type) the representations of general aane Hecke algebras can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004